Figure 1 shows the relative permeability with respect to brine saturation (S_w), for the CO₂-brine system during drainage and imbibition used for rock type I and II. krw and krg represent the relative permeability of brine and CO₂, respectively. No special core analysis (SCAL) data available in this pre-construction phase, therefore irreducible water saturation (S_{wir}) was assumed to be 0.2 and 0.3 for sand and shale, respectively. Note that irreducible gas saturation (S_{gir}) was set to zero, which led to the simulated results conservative in terms of CO₂ migration or plume-based AoR. SCAL with the rock cores in the Mendota storage site will be conducted from a proposed characterization well and used to define the relative permeability and capillary pressure to better estimate CO₂ plume behavior. End-point relative permeability (Krg) at irreducible water saturation for both rock types was assumed to be 1.0. van Genuchten model was used to create relative permeability and capillary pressure curve. Table 1 summarized the constitutive relationships for the reservoir rock types in the model. No hysteresis in the relative permeability and capillary is considered currently.

Figure 1: Relative permeability curves for rock type I and II.

Table 1: Constitutive relationships for rock types used in reservoir modeling

Rock Type		Rel. Perm		Capillary Pressure
		CO2	Brine	(P _c)
I	Drainage	$ \begin{array}{c} \text{van Genuchten model} \\ S_e = & (S_w - S_{w,ir})/(1 - S_{w,ir}) \\ K_{rg} = & k_{rg} (S_{w,ir}) \ (1 - S_e)^{1/2} \ (1 - S_e^{1/m})^{2m} \\ m = & 0.92 \end{array} $	$ \begin{array}{l} \text{van Genuchten model} \\ S_e = & (S_w - S_{w,ir})/(1 - S_{w,ir}) \\ K_{rw} = & S_e^{-1/2} [1 - (1 - S_e^{1/m})^m]^2 \\ m = & 0.92 \end{array} $	van Genuchten model $S_e=(S_w-S_{w,ir})/(1-S_{w,ir})$ $P_c=\alpha^{-1}[(Se^{-1/m}-1]^{1/n}$ α (1/Pa)= 5.32E-5 m =0.92 n =1/(1-m)
	Imbibition (hysteresis)	No Hysteresis	No Hysteresis	No Hysteresis
II	Drainage	$ \begin{array}{c} \text{van Genuchten model} \\ S_e = & (S_w - S_{w,ir})/(1 - S_{w,ir}) \\ K_{rg} = & k_{rg} (S_{w,ir}) \; (1 - S_c)^{1/2} \; (1 - S_c)^{1/2$	van Genuchten model $S_e=(S_w-S_{w,ir})/(1-S_{w,ir})$ $K_{rw}=S_e^{-1/2}[1-(1-S_e^{-1/m})^m]^2$ $m=0.92$	van Genuchten model $P_c=\alpha^{-1}[(Se^{-1/m}-1]^{1/n}$ $\alpha (1/Pa)=1.19E-6$ $m=0.92$ $n=1/(1-m)$
	Imbibition (hysteresis)	No Hysteresis	No Hysteresis	No Hysteresis

where

 K_{rg} : CO2 relative permeability K_{rw} : aqueous relative permeability

S_w: water saturation

S_{w,ir}: irreducible water saturation S_e: effective wetting fluid saturation S_{co2}: CO2 saturation (=1-S_w)

S_{co2}: CO2 saturation (=1-S_w) α^{-1} : entry pressure (psi) n and m: fitting parameters